Search results for "Optical vortex"
showing 10 items of 17 documents
Generation of programmable 3D optical vortex structures through devil’s vortex-lens arrays
2013
Different spatial distributions of optical vortices have been generated and characterized by implementing arrays of devil's vortex lenses in a reconfigurable spatial light modulator. A simple design procedure assigns the preferred position and topological charge value to each vortex in the structure, tuning the desired angular momentum. Distributions with charges and momenta of the opposite sign have been experimentally demonstrated. The angular velocity exhibited by the phase distribution around the focal plane has been visualized, showing an excellent agreement with the simulations. The practical limits of the method, with interest for applications involving particle transfer and manipula…
Dipole soliton-vortices
2007
On universal symmetry grounds, we analyze the existence of a new type of discrete-symmetry vortex solitons that can be considered as coherent states of dipole solitons carrying a nonzero topological charge. Remarkably, they can be also interpreted as excited angular Bloch states. The stability of new soliton states is elucidated numerically.
Experimental verification of position-dependent angular-momentum selection rules for absorption of twisted light by a bound electron
2018
We analyze the multipole excitation of atoms with twisted light, i.e., by a vortex light field that carries orbital angular momentum. A single trapped $^{40}$Ca$^+$ ion serves as a localized and positioned probe of the exciting field. We drive the $S_{1/2} \to D_{5/2}$ transition and observe the relative strengths of different transitions, depending on the ion's transversal position with respect to the center of the vortex light field. On the other hand, transition amplitudes are calculated for a twisted light field in form of a Bessel beam, a Bessel-Gauss and a Gauss-Laguerre mode. Analyzing experimental obtained transition amplitudes we find agreement with the theoretical predictions at a…
Devil’s vortex-lenses
2009
In this paper we present a new kind of vortex lenses in which the radial phase distribution is characterized by the "devil's staircase" function. The focusing properties of these fractal DOEs coined Devil's vortex-lenses are analytically studied and the influence of the topological charge is investigated. It is shown that under monochromatic illumination a vortex devil's lens give rise a focal volume containing a delimited chain of vortices that are axially distributed according to the self-similarity of the lens.
Twin axial vortices generated by Fibonacci lenses.
2013
Optical vortex beams, generated by Diffractive Optical Elements (DOEs), are capable of creating optical traps and other multifunctional micromanipulators for very specific tasks in the microscopic scale. Using the Fibonacci sequence, we have discovered a new family of DOEs that inherently behave as bifocal vortex lenses, and where the ratio of the two focal distances approaches the golden mean. The disctintive optical properties of these Fibonacci vortex lenses are experimentally demonstrated. We believe that the versatility and potential scalability of these lenses may allow for new applications in micro and nanophotonics.
Differential operator formalism for axial optical vortex beam and the double-phase-ramp converter
2019
A systematic study of the properties of the output dark rays or singular skeleton for the Laguerre-Gaussian beam LG 01 passed through double-phase-ramp converter is presented. When the DOE is discontinuous at the origin, as is the case here, the transfer function is not analytical, so that a special theoretical approach is needed. The previously reported formalism of scattering modes, which permitted the analytical calculation of arbitrary multisingular Gaussian beams, requires analyticity everywhere. We present here an adaption of this formalism that overcomes this limitation. The procedure is based on the differential operator algebra used in the previous construction. We give an example …
Excitation of E1-forbidden Atomic Transitions with Electric, Magnetic or Mixed Multipolarity in Light Fields Carrying Orbital and Spin Angular Moment…
2019
Photons carrying a well-defined orbital angular momentum have been proven to modify spectroscopic selection rules in atomic matter. Excitation profiles of electric quadrupole transitions have been measured with single trapped $^{40}$Ca$^+$ ions for varying polarizations. We further develop the photo-absorption formalism to study the case of arbitrary alignment of the beam's optical axis with respect to the ion's quantization axis and mixed multipolarity. Thus, predictions for M1-dominated $^{40}Ar^{13+}$, E3-driven $^{171}Yb^+$ and $^{172}Yb^+$, and B-like $^{20}Ne^{5+}$ are presented. The latter case displays novel effects, coming from the presence of a strong photon -- magnetic dipole cou…
Intensity spiral patterns in a semiconductor microresonator
2005
Spiral waves appear frequently in nature. They have been studied, e.g., in hydrodynamic systems, chemical reactions, and in a large variety of biological and physical systems [Grill et al., Phys. Rev. Lett. 75, 3368 (1995); Goryachev and Kapral, Phys. Rev. Lett. 76, 1619 (1996)]. In contrast to chemical and hydrodynamic processes where the field amplitude exhibits the spiral patterns (intensity spirals), in optics the spiral structures relate generally to the phase structure of the optical field (so-called 'optical vortices' [Lugiato et al., Adv. At., Mol., Opt. Phys. 40, 229 (1999); Arecchi et al., Phys. Rep. 318, 1 (1999); Weiss et al., Appl. Phys. B:Lasers Opt. B68, 151 (1999)]). Thus th…
Diffraction-free beams in thin films
2009
The propagation and transmission of Bessel beams through nano-layered structures has been discussed recently. Within this framework we recognize the formation of unguided diffraction-free waves with the spot size approaching and occasionally surpassing the limit of a wavelength when a Bessel beam of any order n is launched onto a thin material slab with grazing incidence. On the basis of the plane-wave representation of cylindrical waves, a simple model is introduced providing an exact description of the transverse pattern of this type of diffraction-suppressed localized wave. Potential applications in surface science are put forward for consideration. Ministerio de Ciencia e Innovación (MI…
A topological charge selection rule for phase singularities
2009
We present a study of the dynamics and decay pattern of phase singularities due to the action of a system with a discrete rotational symmetry of finite order. A topological charge conservation rule is identified.